
Test Execution Control Tool:
Automating Testing in Spacecraft Integration and Test

Environments
Michael Levesque

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 9 1 109

Michael.Levesque@jpl.nasa.gov

John Louie
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 9 1109

John.Louie@jpl.nasa.gov

818-393-7987

818-354-146

Ana Guerrero
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 9 1109

Ana.Guerrero@jpl.nasa.gov
818-354-1317

Abstract-In the era of faster, better, cheaper, JPL aims to
develop and integrate an ever increasing number of spa-
subsystems and instruments. One of the problems JPL faces is
to quickly, efficiently and accurately test these subsystems in a
diverse set of environments h m the breadboard, to
environmental simulation and through launch preparation.
The Test Execution Control Tool was developed using a Tool
Command Language vcl) [l] based test script interpreter to
aid engmeers in automating fight system test procedures.

The Test Execution Control Tool is a Tcl based
application that allows testers to develop and regulate the
execution of a test script in a spacecraft test environment.
Using the TECT, a tester can make the diverse collections of
ground software, ground support equipment and fight systems
work together through automated scripts. Tcl is the language
of choice because of its ease of use, breadth of functionality,
extensibbty, platform independence and open source. By
addmg a graphical user interface for controlling Tcl script
execution and adding interfaces for simultaneously
commandmg and receiving telemetry h m the test equipment
and the system under test, a spaced€ tester is provided a
single point of test execution control. Additionally, tests can be
filly automated with closed loop control between command
and telemetry from all test support equipment and telemetry
analysis software.

The TEXT is a proven tool in the mission critical testing
environment bringing a project several advantages. It is

easy to use, extensible and allows engineers to automate
testing tasks to a much higher degree than they otherwise
could. Because it allows projects to access and coordinate
all the components of the complex testing environment, you
not only achieve broader test coverage, leading to higher
product assurance, but you achieve more speed and
efficiency, leading to lower costs and faster results.
Furthermore the tools extensibility and flexibility allow the
mission to use the same ground processing software during
test as the mission operator will use during flight.

TABLE OF CONTENTS

1. INTRODUCTION
2. FUNCTIONAL DESCRIPTION

4. OPERATIONS
3. DESIGN AND IMPLEMENTATION

5. RESULTS AND FUTURE WORK
6. REFERENCES

1. INTRODUCTION

The Jet Propulsion Laboratory supports unmanned deep
space missions through an Advanced Multi-Mission
Operations System (AMMOS) that is developed and
operated under the Telecommunications Mission
Operations Directorate (TMOD). The AMMOS supports

mailto:Michael.Levesque@jpl.nasa.gov
mailto:John.Louie@jpl.nasa.gov
mailto:Ana.Guerrero@jpl.nasa.gov

a l l JPL dccp spacc mission flight opcrations. It is also
uscd during spacecraft intcgration and mission Acceptance
Test and Launch Opcrations (ATLO) providing full
mission Iifc cycle support.

JPL and its partners plan to develop, test and operate more
missions over shorter life cycles than in the past. Figure 1
illustrates the mission support roadmap [2].

0

e3
*
N ' '

% ,
a :.
; "

.
*Yl

IPPT 1- I= urn mr ma wca xm wca mo6 rn aom m o zoo11 wla
C.lmdr Y c r

Figure I . Mission Support Roadmap

In order to accomplish this, opportunities are being
explored to shorten mission development life cycles while
increasing quality standards. The Test Execution Control
Tool (TECT) described in this paper is one approach to
shortening spacecraft and instrument integration and test
life cycle times and cost while increasing the quality of the
test program.

The TECT is presented in the following three sections.
The first section presents an overview of the Test Execution
Control Tool functional description. The second part
describes the TECT detailed design. The third part uses a
case study to cover the operational aspects and results from
using the TECT. Finally, a brief discussion of future work
and conclusions are provided.

2. FUNCTIONAL DESCRIPTION

The primary objective of the TECT is to provide
functionality for testing instrument or spacecraft systems.
This section describes the TECT functionality.

Test scripting and control

The TECT provides an interpreted scripting language for
specifying and controlling tests. The language is used to
write test scripts to automate spacecraft or instrument
integration, functional and performance tests. Primitive
commands to spacecraft, instruments and test support
equipment are bundled into test scripts. Control feedback
from monitored data can also be added to the scripts.

The TECT script intcrprcter reads thesc scripts. chccks for
syntax errors bcforc cxecution and issues commands to thc
flight and tcst support subsystems in a spccified timc
sequence. The TECT executes and synchronizes test
sequences from one central point even if the subsystems
which are under its control are distributed. Test sequences
are reusable since selecting and controlling test sequences
through TECT is flexible. The number of test sequences
and control through TECT is virtually unlimited.

Interfaces to Distributed Processes

One principle function of the system test environment and
TECT is to centralize testing by coordinating the operation
of several distributed subsystems. Many of these distributed
test activities occur simultaneously. These activities
include[3];

a) Commanding of the flight instrument or

b) Control of the test support equipment,
c) Collection and recording of test data from the

instrument or spacecraft and test support
equipment,

d) Instrument or spacecraft and support data health
checks,

e) Conversions and display for instrument or
spacecraft and test support data engineering units,

f) Distributing test data for post test performance
analysis.

spacecraft,

The TECT integrates each of the distributed processing
elements by providing a remote data monitor and control
interface. Control with feedback from monitored data is
provided through these interfaces for each subsystem
involved in a test.

Event Reporting and Logging

Event reporting and logging are critical to test case analysis
and trouble shooting. The TECT as three classes of
logged data; that logged under user control, that logged
from sending a command to one of the remote subsystems,
and that logged as a result of a user initiated control event
from the user interface. User logged events generally
represent significant data taken during a test that is
required for post test analysis. Logged commanding
events are performed when commands are send to the
instrument or spacecraft and to the test equipment. These
generally aid in troubleshooting anomalies with flight
software or hardware interfaces. Finally all user controls
are logged to again troubleshoot anomalies with the test
procedures themselves or provide status of the testing
activity.

3 . DEsrGN AND IMPLEMENTATION

T'his scction provides an overview of the end-to-end
information system functional design. It establishes the
environment in which the TECT is used. This is followed
by a detailed description of the TECT design including
discussion on the tradcoffs made during the design process.

Test System Function Design

The Test, Telemetry and Command Subsystem (TTACS)
consists of software and hardware, which, combines
operational Multi-mission Ground Data System (MGDS)
applications, to provide a telemetry and command data
system in spacecraft test [4]. TTACS components allow
data to flow to and from the instrument or spacecraft and
test support equipment. Components of the MGDS for test
include flight and support equipment data acquisition,
telemetry processing including frame synchronization,
decoding, and channelization, telemetry data cataloging,
archiving, retrieval and distribution, Engineering data
processing for converting data numbers to engineering
units, alarming and displaying engineering data, and
various othe; tools for analyzing and displaying telemetry
data as shown in Figure 2.

Figure 2. EEIS Design Diagram

Test Execution Control Tool Design

The TECT design includes three components, the script
interpreter, the graphical user interface and the control
interfaces as shown in Figure 3. The test script interpreter
is based on the Tool Control Language (Tcl). Test scripts
written in Tcl are input, syntax checked and executed by
the TECT script interpreter. The graphcal user interface,
called builder, is used to control the flow of the executing
test script. The builder also provides functions for
debugging anomalies either in the test script itself or the
system under test. Finally the control interfaces are used
to send commands and receive responses from the

Figure 3. TECT Detailed Design Diagram

Test Execution Control Tool Scripting Language

The TECT was built using a scripting language for several
reasons [5];

a) the tests to be performed were not well defined and

b) the main test of the application was to integrate

c) the application needed to manipulate a variety of

d) it must have graphical user interface capabilities,
e) the application does a lot of string processing,
f) functionality would evolve over time,
g) it must be easy to extend and customize in the

would change rapidly over time,

and coordinate a set of existing components,

different things,

field.

Three scripting languages were considered; Perl, a
language developed in-house and Tcl. The criteria for
evaluating them included [6] ;

a) Widely used in the IT community,
b) In-house expertise,
c) Easy to use,
d) Easy to extend,
e) Support for graphcal user interfaces,
f) Low cost or freely available.

Per1 provided the largest IT and in-house community.
Extensions are easily added and widely available from the
user community. Support for graphcal interfaces is not
supported but can be added by integrating additional

packagcs or third party software. It is frcely available and
supportcd on a wide varicty of platforms. Additionally it
pcrforms well and it’s implementation is robust. The one
problcm with Perl was its ease of use. It was generally
considcrcd too complcx a language for the user community
that would bc responsible for developing and reviewing the
tcst scripts.

A language developed in-house was consider since it would
offer the development team the greatest control over the
language and could be highly tailored to the integration and
test community. But the in-house language would not be
able to provide in the field extension. Since the test
procedures and scripts were ill-defined during the TECT
development phase, this lack of extension in the field was
the greatest problem with an in-house language.
Furthermore an in-house language would lack general IT
and in-house community support. Finally it would lack
graphical user interface support.

Tcl was the single most inviting of the languages. First it
is very easy to use. It is highly extensible by both the
developmentteam and the test scripting team It has wide
IT and in-house community support particularly in the test
automation domain. Additionally, graphical user interfaces
could be supported through the Tk [l] extension. Finally,
it is freely distributed and available on at least as many
platforms as Perl.

TECT Language Extensions

Extensions are modules written in a language different
from Tcl which extend the functionality of Tcl in some way
[7]. There were three reasons to extend Tcl for the TECT;

a) To add flight instrument test domain-specific
functionality, in the form of the procedure
command,

b) To interface the Tcl scripting language
environment to existing software, in the form of
the route command,

c) To provide a flexible way to access many test
script modules, in the form of the call command.

The procedure command was added to designate high-level
procedural text within the test script. Spacecraft and
instrument system test involves the definition of well
defined procedures that have high visibility for the test
team. The functionality provided by the procedure
command was to make this text easily identified through
the graphlcal user interface and provide test script controls
for it similar to those provided of the more primitive
scripting commands.

route <destination> <command>

Where destination is specified for a control interface and
command is the string to be sent to that control interface
destination. In Seawinds the control interfaces were for
the flight system, the three subsystem support equipment
and the telemetry processing software.

The call command was added to invoke a script module
from within other script modules. The call command has
the form:

call <script name>

Where the script name is another script module that will be
loaded and interpreted by the TECT given the current
executing environment controls. The call was primarily
used by test script writers to reuse test sequences in many
different high-level procedures.

TECT Graphical User Interface and Test Script Control

The graphical user interface developed in Motif is shown in
Figure 4. It communicates with the TECT script
interpreter through a socket interface and starts the TECT
interpreter. At run time help files are read and user
defined Tcl built in commands are read from an input file.
The reminder of this section describes the operation of the
TECT user interface.

The interface window includes a menu bar, a row of control
buttons, a row of user programmable macro buttons a
&splay areas on the left for a test summary of the steps in
the test procedure, a display areas on the right for the actual
test script, a command message area, and a scrolling
message area across the bottom of the window.

The route command was added to provide a generic
message oriented interface to the subsystem under control
of the E C T . The route command has the form:

I/ / I I

lid. (u l l m"ZllS.ly.41 1
uui. (UII tm.n..uniw.->

i l " l H . . d , " , l .

B
+=d cDE.dAlJ.lY.-V

M 5 m l y m I . . q
FmM nd,q #,I.
U - L

P l l l P l
fucl&TP
M 5 " t . r l l n l U . D P
r l n l m n l . -
DcaDd / " I w ~ , - , ~ & . m . ~

~

."I* u 3.t

a-
Figure 4. TECT Graphical User Interface

As each co&and in a script is executed, it is underlined
on both the left and the right script Qsplay areas.

The File menu has Open, Open Clear, and Exit options.
Open clear resets all predefined Tcl script variables.

The Options menu contains Clear (Buffer) Modes, Show
Command Area toggle, and Restart SIMX (the Tcl
Interpreter).

The Builder menu contains help files for mission specfic
flight commands.

The Help menu contains Tcl help (as opposed to interface
help).

The row of test script control buttons under the menu bar
includes the following:

reload Reloads the current script and places the step at
the top of the script.

run Runs the loaded script file from beginning to end,
or until a Stop-marked statement is reached.

cont Runs the script continuously from the current step
to the end or until a stop-marked statement is
reached.

interrupt Stops a running script at the current
position.

print Prints the value for the highlighted text. For
example, if you highlight a variable in the text and
click on the print button, the current value of that
variable is printed in the message area of the
display.

step Performs the next step in a line of script. There

may bc morc than onc stcp in a statcmcnt: for
cxamplc. thc rcsult of one calculation o r variable
value must be determined before the command can
be completed. Message area rep0rts"step.

next Performs an entire command, which may include
more than one operation. Message area reports
"next. "

skip Skips a statement in a script.
stop at Inserts a stop point. (Currently, the stop point

delete Deletes a stop mark.
invoke Copies highlighted text, preceded by the

"invoke" command, to the command message
area. Pressing <ENTER> then invokes the
command. Meant primarily as a tiiesaver in
typing commands.

goto Moves to the highlighted step in the procedure,
as displayed in the script syntax area (on the
right). Then, clicking a n t , step, or next executes
the script from that point.

is not marked on the interface.)

4. OPERATIONS

In this section, operational use of the TECT is described
using a case study of the Seawinds Instrument Integration
and Test team. The instrument integration and test team
was responsible for system functional and performance
testing of the instrument. The team used the TECT and
TTACS shown in Figure 5 to 'perform this testing,
including at the subsystem level, during subsystem
integration, in environmental test and prior to integration
with the spacecraft. Each of these environments required
slightly different configurations requiring the TECT and
TTACS test system to be flexible enough to accommodate
missing flight system and support equipment functions.
Additionally the test scripts and scripting language needed
to support modularity so reuse could be maximized. This
section describes the test scripts that were developed for
Seawinds system integration and test.

Figure 5. Seawinds Test, Telemetry and Command System

'lkst hkrip Ilcsign 11nd Kxmlplcs

By cstcnding thc Tcl within TECT to includc thc function
d l . thc test and intcgration team layered the test scripts
into scts of modules. This layering took the form shown in
Figure 6 .

Procedures -
arc the hlghest
level scrtpts
- call subsystem
scnpts

Figure 6. Seawinds Test Script Layering

Procedures represent the hghest level of integration and
test to be performed by the script. These are system level
tests and are scheduled items w i h n the instrument test life
cycle. Subsystem scripts represent the functions of a
subsystem to be tested. Although they are specific to the
requirements and design of the subsystem they are not tied
to any one hardware or software implementation. The
subsystem primitive scripts contain implementation specific
commands and data to be checked from the subsystem. For
control feedback, valid and invalid command counts are
checked prior to senQng a command then the scripts wait
for either counters to increment before processing or failing
on a timeout with a warning to the user or event log.
Additionally. if commands generate changes to telemetry
values that change is waited for or fails on a timeout with a
warning to the user or event log.

The following is part of a script, called
CDS-relay-control.scp. It illustrates the calling sequence

and modularity between thc subsystcm prirnitivc scripts and
the utility scripts.

#-- Build command ------
set script-and "relay %rc-relay-namc %rc-statc"
set command "$Script_command%scpt_Lmd"

#--- An example of calling a utility script in another file
#---- check the current command counters
if { Src-relay-type - Sht-relay } {

call CDS-get-command-counts.scp
1

#- send and log the command
set reply [route SE.CDS "%command"]

#---An example of calling a utility script in another fde
#" check command counters increment properly
call CDS-wait-command-counntscp

#- ifwait for command count increment times out
if { $Command-count-status != %CDS-good-command } {

callDisplay-err0r.q
"Script:%sniptnameLtL\rgs:%args\nReply:%reply\nCommand count error"

. . . remainder of script removed . . .

Most of the variables are passed in as parameters. The
parameters can determine which calls get made internal to
the script. For example there is a procedure script, called
Configuration.scp, where the parameters passed in are
whch subsystem to configure, eg. cdsa, cdsb, twta, twtb.
If the parameter passed to the Configuration.scp was cdsa
then a CDS subsystem script would be called, ie.
CDS-select-CDS-A.scp. This subsystem script would in
turn call the script, CDS-relay-contro1,scp shown above,
controlling the appropriate relays for CDS A.

Scope of the test scripting

In order to get a better understanding of the test scripting
effort it is important to get a metric for the complexity of
the system under test. For the Seawinds instrument, there
are approximately 11 1 commands. 676 telemetry points and
three subsystems.

The Seawinds instrument integration and test program
provides us with metrics to assess the level of effort
required to automate the test program. For the Seawinds
integration and test program, 115 procedure level scripts
were developed. Each of these 115 procedures was
supported by an additional 327 subsystem and subsystem
primitive scripts and 73 common utility scripts. The
subsystem scripts were roughly split among the two major
subsystems of the instrument. There were 14,919 lines of
Tcl written for these scripts.

5 . RESULTS AND FUTURE WORK

T h s paper presented a test scripting tool that is used to
provide high degrees of test script automation. The paper
discussed the TECT functionality as it applies to the

application of spacccrafi and instrument test and
intcgration. The TECT design was discussed including
why scripting languages were used and the reasons for
selecting Tcl as the TECT language of choice. Finally the
operational aspects of test script development were
discussed using the Seawinds case study.

A tugh degree of automation is possible and tests can be
made more robust when scripted, whether or not control
feedback is included. Further study of additional test cases
should show that the system test procedures are hghly
repeatable by using script automation and that the level of
effort and time required to perform testing should be
reduced for the second system under test or as tests are
rerun in different test environments.

Functionally TECT will be extended for the SIRTF Mission
to include interfaces to mission planning and sequencing
software. It will also be prototyped as a monitor and
control system for the Multi-mission Ground Data System
(MGDS) supporting all JPL deep space mission operations.

Finally, the_TECT design will be reviewed to consider
capabilities provided in newer versions of Tcl. These may
include a commercial debugger as a replacement for the
graphical user interface, using Tcl libraries as a
replacement for the call extension and adding user
community extensions to the configuration of TECT.

6 . REFERENCES

[11 John Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley,
1994.

[2] G. Squibb, C. Eaton, W O D Roadmap; Deep Space
Network Long Range Plan Consistent with NASA Code-S
Mission Set, January 28, 1998.

[3] Seawinds Experiment Ground Support Equipment
Requirements document, P L D-11963, December 1994.

[4] Users Guide for the Test Execution Control Tool,
MGSOOO84-00-03 (JPL D-12479), December 1995.

[5] Scriptics, System Programming or Scripting?, Scriptics
Corporation, October 6 , 1999.

[6] Cameron Laud and Kathryn Soraiz, Chosing a scripting
language, Sunworld, October 1997.

Mike Levesque is a member of the Technical staff at .Jet
Propulsion Laboratoy He serves as the
Telecommunications Services System Service Development
Engineer and perjorms lead system engineering for
telemetty, command and data management from the space
link through JPL mission control. He is a BSCS from
Rensselear Polytechnic Institute. He has received the
NAS4 Exceptional Service Medal for his contributions in
developing Mission Operations Systems while at JPL.

John Louie and Ana Guerrero are also members of the
Technical staffat JPL.

Acknowledgements; Dianne Fisher for her dedication to
user understanding and allowing us to reproduce sections
of the TECT Users Guide. Rob Gaston, John Wirth and
Doug Russell for providing the Seawinds case study. Joe
Diep and Rommel Mojica for making the TECT work in
Seawinds ATLO. Susan Kurtik for sponsoring our effort.

[7] Jean-Claude Wippler. How to use extensions in TCL,
1998.

